Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 181, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285209

RESUMO

Bacillus thuringiensis (Bt) produces crystals composed mainly of Cry pesticidal proteins with insecticidal activity against pests but are highly susceptible to degradation by abiotic factors. In this sense, encapsulation techniques are designed to improve their performance and lifetime. However, the effects of polymeric matrix encapsulation such as gum arabic and maltodextrin by spray-dryer in the mechanisms of action of Bt kurstaki and Bt aizawai are unknown. We analyzed crystal solubilization, protoxin activation, and receptor binding after microencapsulation and compared them with commercial non-encapsulated products. Microencapsulation did not alter protein crystal solubilization, providing 130 kDa (Cry1 protoxin) and 70 kDa (Cry2 protoxin). Activation with trypsin, chymotrypsin, and larval midgut juice was analyzed, showing that this step is highly efficient, and the protoxins were cleaved producing similar ~ 55 to 65 kDa activated proteins for both formulations. Binding assays with brush border membrane vesicles of Manduca sexta and Spodoptera frugiperda larvae provided a similar binding for both formulations. LC50 bioassays showed no significant differences between treatments but the microencapsulated treatment provided higher mortality against S. frugiperda when subjected to UV radiation. Microencapsulation did not affect the mechanism of action of Cry pesticidal proteins while enhancing protection against UV radiation. These data will contribute to the development of more efficient Bt biopesticide formulations. KEY POINTS: • Microencapsulation did not affect the mechanisms of action of Cry pesticidal proteins produced by Bt. • Microencapsulation provided protection against UV radiation for Bt-based biopesticides. • The study's findings can contribute to the development of more efficient Bt biopesticide formulations.


Assuntos
Bacillus thuringiensis , Praguicidas , Polissacarídeos , Animais , Praguicidas/farmacologia , Goma Arábica , Agentes de Controle Biológico , Larva , Controle de Pragas
2.
Toxicol In Vitro ; 95: 105747, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38043627

RESUMO

The incidence of viruses such as Zika, Dengue, and Chikungunya affects human health worldwide, and insect repellents are recommended for individual protection. Formulations incorporating nanotechnology should be carefully assessed for toxicity, particularly regarding the security levels established for human health and the environment. This study evaluates the cytotoxicity of a repellent formulation containing zein nanoparticles (NP) loading geraniol (Ger) and icaridin (Ica) in three cell lines: NIH/3T3, HaCaT, and SIRC. To address formulation hazards, IC50 values were determined by MTT and Calcein-AM assays. In both NIH/3T3 and HaCaT, the IC50 values for NP + Ger + Ica formulation were around 0.2%. For risk assessment, cell viability was also determined after a single exposure and repeated exposure to the formulation. No evidence of cytotoxicity was observed for NP + Ger + Ica formulation-treated cells. The risk assessment for eye damage revealed cytotoxicity in SIRC cells when exposed to a 5% concentration, which may be attributed to ocular geraniol toxicity, because zein nanoparticles alone did not exhibit any signs of toxicity. Cell internalization indicated low uptake in NIH/3T3 and HaCaT cells. Phenotypic profiling resulted in similar phenotypes for untreated cells and cells exposed to NP + Ger + Ica formulation. The toxicological profile outlined by the multiparametric and orthogonal approach suggests that the NP + Ger + Ica formulation poses no significant risk to the topical application under the tested conditions. Adopting an orthogonal approach brings robustness to our findings.


Assuntos
Repelentes de Insetos , Nanopartículas , Zeína , Infecção por Zika virus , Zika virus , Humanos , Repelentes de Insetos/toxicidade , Zeína/toxicidade , Monoterpenos Acíclicos/toxicidade , Nanopartículas/toxicidade
3.
Ticks Tick Borne Dis ; 14(4): 102184, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37105010

RESUMO

The use of chemical acaricides is the primary strategy to control tick infestations. Nonetheless, chemical resistance in ticks has been reported. Thus, complementary methods such as biological control using entomopathogenic fungi (EPF) have been investigated. EPF, although efficient, have their viability compromised when applied under natural conditions, which indicates that formulation development is essential. Some researchers have demonstrated the efficacy of ionic gelation in protecting EPF against deleterious abiotic factors. In the present study, we conducted the ionic gelation technique to encapsulate Metarhizium anisopliae (Metschn.) Sorokin (Hypocreales: Clavicipitaceae) conidia in 2% (EC 2%) and 3% (EC 3%) sodium alginate. Next, the quantity and viability of encapsulated conidia (EC) were determined. The morphology of particles was characterized by using Scanning Electron Microscopy (SEM). EC and non-encapsulated conidia (NEC) were stored at room temperature (26.8 °C) and in the freezer (-11.9 °C) to shelf-life testing. For UV-B irradiance tolerance and thermotolerance tests, EC and NEC were exposed to UV-B (6.0 or 8.0 kJ m - 2) and heat (42 ºC). In addition, biological parameters of Rhipicephalus microplus Canestrini (Acari: Ixodidae) engorged females exposed to EC were evaluated. The particles presented a spherical shape, more homogeneous (EC 2%) or heterogeneous (EC 3%). Encapsulation decreased (4.8×) the conidial concentration and did not affect their viability. On the other hand, encapsulation increased the shelf life of conidia at room temperature as well as their UV-B tolerance and thermotolerance (6 h). The fungal particles decreased the biological parameters of females more significantly than the NEC. As far as we know, we reported for the first time the use of the ionic gelation to encapsulate entomopathogenic fungi toward controlling R. microplus.


Assuntos
Ixodidae , Metarhizium , Rhipicephalus , Animais , Feminino , Rhipicephalus/microbiologia , Esporos Fúngicos , Controle Biológico de Vetores/métodos , Ixodidae/microbiologia
4.
J Hazard Mater ; 417: 126004, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992010

RESUMO

Nanoencapsulation of biopesticides is an important strategy to increase the efficiency of these compounds, reducing losses and adverse effects on non-target organisms. This study describes the preparation and characterisation of zein nanoparticles containing the botanical compounds limonene and carvacrol, responsive to proteolytic enzymes present in the insects guts. The spherical nanoparticles, prepared by the anti-solvent precipitation method, presented in the nanoparticle tracking analysis (NTA) a concentration of 4.7 × 1012 ± 1.3 × 1011 particles.mL-1 and an average size of 125 ± 2 nm. The formulations showed stability over time, in addition to not being phytotoxic to Phaseolus vulgaris plants. In vivo tests demonstrated that formulations of zein nanoparticles containing botanical compounds showed higher mortality to Spodoptera frugiperda larvae. In addition, the FTIC probe (fluorescein isothiocyanate) showed wide distribution in the larvae midgut, as well as being identified in the feces. The trypsin enzyme, as well as the enzymatic extract from insects midgut, was effective in the degradation of nanoparticles containing the mixture of botanical compounds, significantly reducing the concentration of nanoparticles and the changes in size distribution. The zein degradation was confirmed by the disappearance of the protein band in the electrophoresis gel, by the formation of the lower molecular weight fragments and also by the greater release of FTIC after enzymes incubation. In this context, the synthesis of responsive nanoparticles has great potential for application in pest management, increasing the selectivity and specificity of the system and contributing to a more sustainable agriculture.


Assuntos
Nanopartículas , Praguicidas , Zeína , Agricultura , Portadores de Fármacos , Composição de Medicamentos , Nanopartículas/toxicidade , Tamanho da Partícula
5.
Ecotoxicology ; 30(4): 733-750, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33821358

RESUMO

Atrazine was banned by the European Union in 2004, but is still used in many countries. Agricultural research employing nanotechnology has been developed in order to reduce the impacts to the environment and nontarget organisms. Nanoatrazine was developed as a carrier system and have been considered efficient in weed control. However, its toxicity must be verified with nontarget organisms. In this context, the aim of the present study was to investigate ecotoxicological effects of solid lipid nanoparticles (empty and loaded with atrazine) and atrazine on Chironomus sancticaroli larvae, evaluating the endpoints: mortality, mentum deformity, development rate and biochemical biomarkers. The contaminant concentrations used were 2, 470, 950, and 1900 µg L-1 in acute (96 h) and 2 µg L-1 in subchronic (10 days) bioassays. An environmentally relevant concentration of atrazine (2 µg L-1) presented toxic and lethal effects towards the larvae. The nanoparticles loaded with atrazine showed toxic effects similar to free atrazine, causing mortality and biochemical alterations on the larvae. The nanoparticle without atrazine caused biochemical alterations and mortality, indicating a possible toxic effect of the formulation on the larvae. In the acute bioassay, most concentrations of nanoparticles loaded with atrazine were not dose dependent for the endpoint mortality. Only the atrazine concentration of 470 µg L-1 was statistically significant to endpoint mentum deformity. The atrazine and nanoparticles (with and without atrazine) did not affect larval development. The results indicate that Chironomus sancticaroli was sensitive to monitor nanoatrazine, presenting potential to be used in studies of toxicity of nanopesticides.


Assuntos
Atrazina , Chironomidae , Herbicidas , Poluentes Químicos da Água , Animais , Atrazina/toxicidade , Ecotoxicologia , Larva , Poluentes Químicos da Água/toxicidade , Controle de Plantas Daninhas
6.
J Nanobiotechnology ; 18(1): 125, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32891146

RESUMO

Incidents of viral outbreaks have increased at an alarming rate over the past decades. The most recent human coronavirus known as COVID-19 (SARS-CoV-2) has already spread around the world and shown R0 values from 2.2 to 2.68. However, the ratio between mortality and number of infections seems to be lower in this case in comparison to other human coronaviruses (such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV)). These outbreaks have tested the limits of healthcare systems and have posed serious questions about management using conventional therapies and diagnostic tools. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis and treatment of COVID-19 and other viral infections. In this review, we discuss the use of nanotechnology for COVID-19 virus management by the development of nano-based materials, such as disinfectants, personal protective equipment, diagnostic systems and nanocarrier systems, for treatments and vaccine development, as well as the challenges and drawbacks that need addressing.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Nanotecnologia/métodos , Pandemias , Pneumonia Viral , Antivirais/administração & dosagem , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Desinfecção/métodos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Nanoestruturas/administração & dosagem , Equipamento de Proteção Individual , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , SARS-CoV-2 , Vacinas Virais/administração & dosagem
7.
Artigo em Inglês | MEDLINE | ID: mdl-32154233

RESUMO

Arboviruses such as yellow fever, dengue, chikungunya and zika are transmitted mainly by the mosquito vector Aedes aegypti. Especially in the tropics, inefficacy of mosquito control causes arboviruses outbreaks every year, affecting the general population with debilitating effects in infected individuals. Several strategies have been tried to control the proliferation of A. aegypti using physical, biological, and chemical control measures. Other methods are currently under research and development, amongst which the use of nanotechnology has attracted a lot of attention of the researchers in relation to the production of more effective repellents and larvicides with less toxicity, and development of rapid sensors for the detection of virus infections. In this review, the utilization of nano-based formulations on control and diagnosis of mosquito-borne diseases were discussed. We also emphasizes the need for future research for broad commercialization of nano-based formulations in world market aiming a positive impact on public health.

8.
Sci Total Environ ; 700: 134868, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31706089

RESUMO

Atrazine is a pre- and post-emergence herbicide used to control weeds in many crops. It was introduced in the late 1950s, but its use has been controversial because of its high potential for environmental contamination. In agriculture, the implementation of sustainable practices can help in reducing the adverse effects atrazine. This review addresses aspects related to the impacts of atrazine in the environment, with focus on its effects on aquatic species, as well as the potential use of nanoencapsulation to decrease the impacts of atrazine. The application of atrazine leads to its dispersal beyond the immediate area, with possible contamination of soils, sediments, plantations, pastures, public supply reservoirs, groundwater, streams, lakes, rivers, seas, and even glaciers. In aquatic ecosystems, atrazine can alter the biota, consequently interfering in the food chains of many species, including benthic organisms. Nanoformulations loaded with atrazine have been developed as a way to reduce the adverse impacts of this herbicide in aquatic and terrestrial ecosystems. Ecotoxicological bioassays have shown that this nanoformulations can improve the targeted delivery of the active ingredient, resulting in decreased dosages to obtain the same effects as conventional formulations. However, more detailed analyses of the ecotoxicological potential of atrazine-based nanoherbicides need to be performed with representative species of different ecosystems.


Assuntos
Atrazina/toxicidade , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Bioensaio , Biota , Ecossistema , Cadeia Alimentar , Água Subterrânea , Nanotecnologia , Rios
9.
J Agric Food Chem ; 66(21): 5325-5334, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29733587

RESUMO

The nanoencapsulation of botanical compounds (such as geraniol) is an important strategy that can be used to increase the stability and efficiency of these substances in integrated pest management. In this study, chitosan/gum arabic nanoparticles containing geraniol were prepared and characterized. In addition, evaluation was made of the biological activity of geraniol encapsulated in chitosan/gum arabic nanoparticles toward whitefly ( Bemisia tabaci). The optimized formulation showed a high encapsulation efficiency (>90%) and remained stable for about 120 days. The formulation protected the geraniol against degradation by UV radiation, and the in vitro release was according to a diffusion mechanism that was influenced by temperature. An attraction effect was observed for Bemisia tabaci, indicating the potential of this type of system for use in pest management, especially in trap devices.


Assuntos
Agricultura/métodos , Quitosana , Goma Arábica , Controle de Insetos/métodos , Nanopartículas/química , Terpenos/administração & dosagem , Monoterpenos Acíclicos , Animais , Difusão , Estabilidade de Medicamentos , Hemípteros , Controle de Insetos/instrumentação , Inseticidas/administração & dosagem
10.
Artigo em Inglês | MEDLINE | ID: mdl-26633987

RESUMO

We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND) preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA) preparation. Venom caused complete, irreversible blockade in PND (40 µg/mL), but only partial blockade (~30%) in EPSTA (3.6 mg/kg, i.m.) after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA) attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations). Preincubation of venom with betulin (200 µg/mL) markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom) virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite.

11.
Sci Rep ; 5: 13809, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26346969

RESUMO

Carbendazim (MBC) (methyl-2-benzimidazole carbamate) and tebuconazole (TBZ) ((RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol) are widely used in agriculture for the prevention and control of fungal diseases. Solid lipid nanoparticles and polymeric nanocapsules are carrier systems that offer advantages including changes in the release profiles of bioactive compounds and their transfer to the site of action, reduced losses due to leaching or degradation, and decreased toxicity in the environment and humans. The objective of this study was to prepare these two types of nanoparticle as carrier systems for a combination of TBZ and MBC, and then investigate the release profiles of the fungicides as well as the stabilities and cytotoxicities of the formulations. Both nanoparticle systems presented high association efficiency (>99%), indicating good interaction between the fungicides and the nanoparticles. The release profiles of MBC and TBZ were modified when the compounds were loaded in the nanoparticles, and cytotoxicity assays showed that encapsulation of the fungicides decreased their toxicity. These fungicide systems offer new options for the treatment and prevention of fungal diseases in plants.


Assuntos
Agricultura , Benzimidazóis/administração & dosagem , Carbamatos/administração & dosagem , Preparações de Ação Retardada , Fungicidas Industriais/administração & dosagem , Lipídeos , Nanopartículas , Polímeros , Triazóis/administração & dosagem , Química Farmacêutica , Estabilidade de Medicamentos , Modelos Teóricos , Nanocápsulas , Tamanho da Partícula
12.
J Agric Food Chem ; 63(2): 422-32, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25537071

RESUMO

Solid lipid nanoparticles (SLN) containing the herbicides atrazine and simazine were prepared and characterized, and in vitro evaluation was made of the release kinetics, herbicidal activity, and cytotoxicity. The stability of the nanoparticles was investigated over a period of 120 days, via analyses of particle size, ζ potential, polydispersion, pH, and encapsulation efficiency. SLN showed good physicochemical stability and high encapsulation efficiencies. Release kinetics tests showed that use of SLN modified the release profiles of the herbicides in water. Herbicidal activity assays performed with pre- and postemergence treatment of the target species Raphanus raphanistrum showed the effectiveness of the formulations of nanoparticles containing herbicides. Assays with nontarget organisms (Zea mays) showed that the formulations did not affect plant growth. The results of cytotoxicity assays indicated that the presence of SLN acted to reduce the toxicity of the herbicides. The new nanoparticle formulations enable the use of smaller quantities of herbicide and therefore offer a more environmentally friendly method of controlling weeds in agriculture.


Assuntos
Atrazina/química , Química Farmacêutica/métodos , Herbicidas/química , Lipídeos/química , Nanopartículas/química , Simazina/química , Atrazina/farmacologia , Herbicidas/farmacologia , Cinética , Tamanho da Partícula , Plantas Daninhas/efeitos dos fármacos , Simazina/farmacologia
13.
Biotechnol Adv ; 32(8): 1550-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25447424

RESUMO

This review article discusses the use of nanotechnology in combination with botanical insecticides in order to develop systems for pest control in agriculture. The main types of botanical insecticides are described, together with different carrier systems and their potential uses. The botanical insecticides include those based on active principles isolated from plant extracts, as well as essential oils derived from certain plants. The advantages offered by the systems are highlighted, together with the main technological challenges that must be resolved prior to future implementation of the systems for agricultural pest control. The use of botanical insecticides associated with nanotechnology offers considerable potential for increasing agricultural productivity, while at the same time reducing impacts on the environment and human health.


Assuntos
Inseticidas/química , Nanotecnologia/métodos , Controle Biológico de Vetores , Agricultura , Química Verde/métodos , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...